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Faculty of Physics, University of Belgrade, PO Box 550, 11001 Belgrade, Serbia 
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Abstract Quantum mechanics is enlarged into a contextual subquantum model, with the 
purpose of describing causally individual quantum systems. This model is based on the 
spectra ofthequantum-mechanical observables. A C'algebraicgeneralization ofthis model 
is presented. Various physically intersting aspects of the constructed subquantum model 
are discussed. 

1. Introduction 

For the majority of physicists the historyof attempts to construct a subquantum theory 
(more often called hidden variables (HV) theory) terminates at no-go theorems, which 
historically began with the famous von Nenmann theorem [I], later proved physically 
irrelevant by Bell [Z]. Actually, a result of lasting value is that of Bell and Gleason 
[2,3] (cf also Kochen and Specker [4]), which has established the fact that one cannot 
ascribe to an individual quantum system simultaneous unique values of all quantum 
observables (except if the state space is two dimensional). 

Namely, quantum mechanics predicts only mean values of observables 8, and they 
follow uniquely from the quantum states p :  (6) = Tr pi .  One would naively expect that 
this state of affairs is mutaris mutandis valid on the subquantum level: the average value 
(6) should be substituted by~a  definite value &(CO) in each subquantum state CO, associ- 
ated with an individual quantum system. Unfortunately, it is not possible to realize this 
expectation due to the forementioned Gleason-Bell result. 

However, a number of well known successfully realized HV theories, such as those 
constructed by de Broglie [ 5 ] ,  Bohm [6]. Bohm-Bub [7] and Wiener-Siegal [8], and, 
finally, the axiomatic theory by Gudder [9 ] ,  show that there exists a large family of HV 
theories not forbidden by the Gleason-Bell theorem. The secret of these models lies in 
the fact that they are all based on the new concept of context, the idea for which was 
introduced first by Bell [Z, IO]. 

Bell suggested that the information which observables are measured simultaneously 
with a  ̂ is decisively relevant for a consistent subquantum description. In other words, 
it is essential to take into account the measurement context M,  i.e. the set of operators 
to which Ci belongs. More precisely, if besides Ci and w, M is also given, only then is 
there no theoretical obstacle that the individual system has a definite value Ci(ffl),,,. 

It should be noted that such a theory permits the possibility that in another measure- 
ment context Ak, to which Ci also belongs, the measured observable Ci may have a 
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different value h(o),, for the same individual system in the same subquantum state 
w. Moreover, contexfualiry actually consists in the fact that there necessarily exist 
triplets (a, M ,  o) and (a, M‘, o) such that n‘(o)M#Li(a))w. Thus, contextuality is indis- 
pensable. (A natural way of treating contextuality is pointed out in part (b) of the 

Shimony [ 1 I] gave a classification of contexts into algebraic and environinenfal ones. 
It is noteworthy that the authors of the mentioned successful HV theories (with the 
exception of Gudder) had not articulated contextuality in their theories (cf discussion, 
part (d)).  The notion of contextuality is also underestimated in the otherwise competent 
summary of HV theories presented by Belinfante [12]. 

For our approach Gudder’s algebraic contextual HV theory was the most inspiring 
proof for the existence of such theories. Unfortunately, it did not find an appropriate 
place in Belinfante’s book, which is probably due to its insufficient connection with the 
rest of the mentioned theories. 

Gudder constructed a subquantum model in which contexts play a decisive role, 
and they are defined as maximal Boolean sub-o-algebras B of the lattice P(H) of 
projectors, where H i s  the Hilbert space of the system. The contexts are the images of 
the spectral measures of complete observables. Gudder’s HV space Cl has the property 
that one can complete each pure quantum state m by a hidden variable OSQ, so that 
the pair (m, w) ‘knows’ the answer to each quantum question belonging to a given 
context B. In more detail, for each context B and for each question (projector) $ E B  
the answer is expressed in terms of a quantity HB(m, o)($). which can take the value 
1 or 0-the physical system in the subquantum state (m, w )  has or has not the property 
$ in the context B, respectively. It must be pointed out that the answer to the same 
question depends on the context to which it belongs. 

We have generalized [13] Gudder’s model by assuming that the above answer Hs 
may not exist on a set of points of zero measure in the space Cl. We have thus obtained 
an HV theory which contains, besides the original Gudder model, a new symplectic HV 
theory, as well as its special cases: the known HV theory of Bohm and Bub 171 and 
that of Wiener and Siege1 [SI. 

Gudder‘s model was also our initial inspiration in this article. Here we try to elimin- 
ate three undesirable ideas suggested by Gudder’s work. First, his theory, like all others, 
starts with the assumption that the pure quantum state m has to be completed by 
hidden variables w in order to obtain a subquantum state (m, w) of the individual 
quantum system. Second, Gudder restricts his theory to projectors in the framework 
of quantum logic. Third, Gudder’s presentation conveys the impression that his notion 
of context B (though he does not call it ‘context’) is the only possibility. 

Instead of projectors, we start by taking quantum observables as our basic entities, 
and for the introduction of contexts we utilize suitable algebras of operators. We con- 
struct the subquantum states w out of the points of the spectra of the observables in 
a way independent of quantum pure states. As to the quantum mixed and pure states, 
they are now context-independent distributions over subquantum states. 

If one eliminates m from the subquantum state and if one takes into account all 
observables (and not just the projectors), then Gudder’s notion of context amounts to 
commutative von Neumann subalgebras of the algebra L ( H )  of all bounded linear 
operators in H.  

The above line of investigation will be dealt with in a separate article. Here we 
confine ourselves to pointing out some of its basic features and disadvantages. 

Every commutative von Neumann algebra N (in a separable Hilbert space H) is 
generated by a single Hermitian element & E N  [14]. The algebra N is naturally iso- 
morphic to the algebra of complex measurable essentially bounded functions on the 

discussion (see section 9.) . ,  
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spectrum a((?). The projectors in N are precisely the spectral projectors of (?, and they 
form a Boolean a-algebra. 

As to shortcomings, the subquantum space B necessarily has the unfortunate topo- 
logical property that it is extremely disconnected. As a consequence, in such a subquan- 
tum space it is not possibIe to introduce local coordinates and, hence, the dynamical 
law cannot be formulated in terms of a Hamiltonian approach, in contrast to [13]. 

In this article the notion of context is varied. In a procedure of generalization a 
general concept of context is reached as an abstract C*-commutative subalgebra, which, 
as a special case, becomes the mentioned von Neumann algebra (see part (a) of the 
discussion), 

The starting point of this article is to take the Cartesian product of the spectra of 
all observables as the subquantum space B. Then the observables a* and, for example, 
2 may have mutually completely independent values in the same subquantum state, 
which is physically unacceptable. Thus the question arises of which functional connec- 
tions between quantum observables should be preserved on the subquantum level. More 
~recisely, there is a known quantum mechanical theorem that says that if an observable 
b has a shap-value b in a quantum state (of course b necessarily belongs to, the po$t 
spectrum of b), and there exists another observable 6 that~is a function of b: (?=f(b), 
then in the same state the observable (?has the sharp valuef(b). It might seem a natural 
assumption that the same relation holds between all values [belonging either to the 
point or to the continuous spectrumlof observables on \he subquantum level: if an 
individual system has the value b of b and one has (?=f(b), then the same individual 
system in the same subquantum state w has the valuef(b) of the observable 6, where 
f i s  a continuous function (reasons for this choice see below). 

Unfortunately, it has turned out that a subquantum theory satisfying this requirement 
for any continuousfis not possible, as follows from the theorem of Gleason (see the 
remark in appendix I). Hence, we must renounce the above context-independent 
assumption. 

We are guided by the following intuitive reasoning in keeping the continuous func- 
tional connections that should be valid also on the subquantum level in a contextual 
model: 

(a) It seems reasonable to assume that each point of the spectrum U(&) (discrete 
or continuous) has an objective, ontological meaning as a hidden property of the 
individual quantum system. 

(b) Further, one should assume that the closeness of two. points in the continuous 
part of the spectrum also has an objective meaning in th- following sense: if two points 
are close in U(&), then they are also close in the discrete spectrum of each approximating 
observable (see the discussion, part (a)). 

The usual approximating observable has the spectral form [I] 

c a.P%, , an+ 
where the points a. break up the real axis, An belongs to the nth interval, and 2 is the 
spectral measure of (?. These non-continuous  functions of Ci violate requirement (b), 
but this can be easily corrected, and we do it in the sequel. 

As it was stated above, for the continuous spectra, approximating observables are 
indispensable, and they are expressed in terms of spectral projectors. Since these are not 
continuous functions, we connect 0 and 1 continuously in the intervals (U,,- E, a. + E).  In 
this way we obtain counterparts of projectors which are continuous functions, and 
which are empirically indistinguishable (due to the sufficient smallness of E )  from 
A .  

E"(a",a"+II. 
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If an observable d is given, then all the operators of the form 

b^=f(d) 

where f: U(;) + C is a continuous function, constitute a commutative C* algebra A, 
which can be characterized either as the minimal C* algebra containing d, or the one 
generated by 6. 

In the next section we start with the construction of a contextual subquantum model 
in which each context M is defined as the (commutative) C* algebra A generated by 
some observable d. 

Further on, we present a general C*-algebraic subquantum model. In this general 
framework the relation between the two special cases of the definition of the context 
M (von Neumann algebras and minimal C* algebras) is discussed (see the discussion, 
part (a ) ) .  

2. Simple contextual subquantum models and the spectral realization 

Let H be the Hilbert state space of a given quantum system, L ( H )  the algebra of 
bounded linear operators in H ,  and let O ( H )  denote the real linear space of Hermitian 
elements (bounded quantum observables) in L ( H ) .  

Throughout this paper we deal with subquantum models in which the following 
four basic concepts are incorporated: 

(i) The concept of contextual causality. A subquantum space 0 is introduced, the 
elements of which (the subquantum states) correspond to the following specifications: 
if a subquantum state o 6s1 of an individual system is given, then the value & ( w ) ~ E o ( ~ )  
of any quantum observable deM in o is defined also if a context M is specified. 

(ii) The ignorance interpretation of quantunz probabilities. For each quantum state 
p (statistical operator in H) a Kolmogorov probability measure (0, P, pp) is given 
such that 

Tr(p4 =J, ll*(O)M dPp(W) (2.1) 

for each deO(H) and each context M containing 2. 

Remark. Formula (2.1) does not make sense unless d ( o ) ~  are measurable functions 
with respect to (0, P). This means that for every Bore1 set BER: 

{o: d(6J)MEB) E P. 

Such an element of P is the subquantum event that corresponds to the quantum event 
&“(B). 

Next, we require the following no-redundancy condition: 
(iii) If ol, co2ss1 are such that d(w,),=d(o& for each &O(H) and each context 

(iv) Let b^=f(d). wheref: R + R is a continuous function. Then ourfinal requirement 
M containing d, then o1 =oz. 

is to preserve the functional dependence of subquantum values 

b ^ @ J ) M = f t ~ ( w ) M I  (2.2) 
for each context M containing d and each subquantum state U .  
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To specify a class ofsimple models we make the following definition of contexts. 
We restrict ourselves to contexts of the form M =  A ,  where A is the minimal C* algebra 
in L ( H )  generated by an arbitrary observable S. Then the number Ci(o), is naturally 
interpreted as the result of a minimal measurement of h [IS]. By this one means a 
measurement that gives the exact result of no other observable than a function of 6. 
In other words, a minimal measurement of h aiso measures all coarser-grained observ- 
ables, but none of the_ finer-grained ones. 

Suppose that d , b c O ( H )  are related, so that there exist continuous functions 
f, g :  R + R with the properties 

.. 
f ( h ) = b  and g(b^)=ri. (2.3) 

f r h ( w ) A l = & ( w ) A  and g[b*(w)Al = 8 w ) A .  (2.4) 

Then and only then do d and b̂  determine the same minimal context A .  Then, for each 
o EQ, we have 

One can naturally interpret pairs of observables satisfying (2.3) in the following 
way: such observables are representing the same measuring procedure, only with differ- 
ent scales. Relation (2.4) actually says that the subquantum theory is invariant under 
change of scale. 

We say that two observables are equivalent if (2.4) holds for them. It is easy to see 
that this determines an equivalence relation in O(H) .  We shall denote by K the set of 
equivalence classes. 

Any other context M that c_ontains h is defined_analogously by the minimal measure- 
ment of another observahle ), such that ri=f(b),  where f is a singular continuous 
function on the spectrum of b. The measurement of ri as a consequence of a minimal 
measurement of 6 is not minimal for 8, because it contains  an^ excess of information 
due to the singularity off. One refers to this measurement of h as its overmeasurement. 

Now the following important question arises: does there exist any subquantum 
theory satisfying all the above requirements? 

There exists at least one realization: the spectral one. We shall now construct it. 
Let us choose from each class k s K  a representative observable & ~ k  and define the 
subquantum space a to be the Cartesian product 

"of the spectra of the observables &. For.each hsO(H) and LUEQ and every context 

f i ( 0 ) A  = f " 0 l  (2.6) 
where k s K  is the unique class such that risk, n~ is a kth coordinate projection and 
f : R  + R a continuous function satisfyingf(hk) =r i .  In spite of the non-uniqueness off, 
our definition is correct, because, as known in functional analysis,fis unique on cr(&). 

In this way we obtain a structure with properties (i), (iii) and (iv). As to property 
(ii), we first define a o-field P on to be the o-field generated by all inverse images 
nL'(A), where AcBk and & is the a-field of Bore1 sets in ~ ( 2 ~ ) .  For each statistical 
operator p in H we consider the probability measure p , ~  on Bk defined by the equality 

A s h  we, by definition, take the value 

pLp.dA) = Tr( P ~ A ( &  )) 

A€&,  and FA(&) is the spectral measure of A associated with hk. 
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For any measurable essentially bounded function (with respect to the spectral 
measure) h:  U(&) + Cone has 

h(&)= 1 Ma) (6k) 
o(dd 

and, accordingly, 

Tr(ph(&))=J dp,&). 
s ( d x )  

Finally, we define a probability measure pp on P to be the direct product of measures 
par. It is then easy to see that the equality Tr(pri)=jnd(w)A dpp(w) of requirement 
(ii) holds because on the right-hand side the integral factorizes and all factors are equal 
to one, except the kth. 

We shall now discuss contextualfeatures of the spectral model, constructed above. 
Contextuality consists in the fact that one and the same observable generally has differ- 
ent values if the system is in the same subquantum state but if the observable is measured 
in different ways. 

To elaborate on this, let us suppose that a measurement of an observable { E O ( H )  
is performed. This measurement is ipofacto a measurement of any observable b s O ( H )  
of the form b^=f(ri), forfcontinuous, i.e. for b which belongs to the context A deter- 
mined by d. In this case the result of the measurement of h  ̂ is,f(ri(w),,), where wen. 
However, iff  is singular on U(&) then b  ̂ also belongs to other contexts, e.g. to B 
determined by 6 itself-corresponding to the minimal measurement of h^. In this case 
the result is and, as a rule, b(w)B+f(B(w)a) .  Hence, we are dealing with a 
contextual subquantum model. 

We shall illustrate the spectral realization of a simple contextual subquantum model 
in a finite-dimensional Hilbert space, in which all observables have discrete spectra. In 
other words, each Hermitian operator can uniquely be written in the spectral form 

.. 

(2.7~) 

where all characteristic values a,, are distinct. The corresponding characteristic decompo- 
sition of the identity operator is 

.. 
i=C$". (2.76) 

The concept of the miriinial rueasureiiient o f  ii is defined [ 151 by requiring: (i) that 
a physical system for which the measurement of ri gave a. has this characteristic value 
with certainty in the case of an immediate repetition of the same measurement; (ii) that 
the change of the quantum state (statistical operator) p in the measurement be minimal 
(in the sense of the distance in the operator Hilbert space). Under these requirements 
it was shown [ 151 that the selective measurement of a, of B converts p into 

n 

(Tr mM%ph. (2.8) 
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However, there also exists the possibility of overmeasucement of observable d con- 
sisting of the minimal measurement of another observable b, the spectral form of which 
is 

b^= c bn,kmhn.k. (2.9) 
n k,> 

where all bn,kn are distinct. We are dealing here with a non-trivial continuation of 
decomposition of the characteristic projectors fin of the observable 2, which proceeds 
as follows: 

Vn :fin = 1 ijn>" (2.10) 
2 

where at least for one value of n there are at least two terms in (2.10). 

spectrum of b̂  on to that of d as follows: 
Equivalently. one can say that d is a function of g, i.e. S=f(b^), where 'f maps the 

Vn, kn:f(bn,k,,)=an. (2.1 1) 

Evidently, the map 'f is singular (or non-injective) on the spectrum of b^. 
From the physical point of view, overmeasurement is a consequence of the simulta- 

neous measurement of S and another observable t that is compatible (commutes) with 
6, but c* has a characteristic decomposition of the identity operator distinct from (2.7b). 
Each characteristic subspace of S, i.e. R($,,), is invariant under E, and its reducee, when 
spectrally decomposed, breaks up R(13.) : 

W") =c: w n . k , , )  (2.10') 

where the subspaces R(&kn) are, the intersections of R ( j J  and those characteristic 
subspaces o f t  that do intersect non-trivially with R o n ) .  

Thus, the purpose of introducing the above observable 6 is to replace formally the 
pa@ of characteristic values of (? and P with the individual characteristic values bn,k, 
of b. 

In order to introduce contexts in a simple way, ,one can break up the set of all 
observables O ( H )  into equivalence classes corresponding to the equivalence relation 
(2.3). which actually means that S and h are functions of each other, non-singular on 
the spectra. One should note that in a finite-dimensional state space all functions are 
continuous (in the discrete topology). We denote the quotient set by K. 

In each of these classes are those observables that can be simultaneously minimally 
measured. All observables belonging to one and the same class are characterized by a 
wmmon characteristic decomposition of the identity operator. 

Since the minimal measurement of an observable d is at the same time also overmeas- 
urement of all observables that are its functions f(i) singular on the spktrum of d, the 
minimal confext A of d consists of all above equivalence classes to which d and allf(Ci) 
belong. 

The suggested model of the spectral realization is based on the idea that for an 
individual quantum system all observables belonging to a given context (the above- 
described family of classes from K )  have a definite value. Since the contexts overlap, 
one and the same observable may have different values for the same individual system, 
depending on the context, i.e. on the choice of the minimally measured observable. 

By definition, contexts appear due to the possibility of overmeasurement, i.e. due 
to degenerate characteristic values. In the case of the two-dimensional state space, there 
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are no non-trivial observables with degenerate characteristic values. Hence, in this 
case each observable belongs to only one context, and, consequently, contexts are not 
necessary [4]. 

In state spaces of three and more dimensions there are infinitely many possibilities 
of overmeasurement of observables that have degenerate characteristic values. The 
question then arises of which overm_easurzments are equivalent. Evidently, this is the 
case when r?= f(6) and ri=g(b’), and b and b’have the same characteristic decomposition 
of the identity. 

Thus the finite-dimensional model gives a simple illustration of the basic and plaus- 
ible idea that a subquantum theory, i.e. individual-system description, is possible only 
if one takes into account the complete measurement procedure (here described by 
contexts). 

3. C*-algebraic formulation of the contextual subquantum model 

It is obvious from the preceding section that the concept of context is the price one has 
to pay for the very existence of acausal subquantum model. At first glance, contextuality 
appears as an unnatural notion among the basic ones like states and variables. However, 
it can be shown [ 161 that a C*-algebraic formulation of the subquantum model can be 
made free of contextuality by an appropriate extension of the C* algebra of quantum 
observables into a C* algebra of subquantum variables. However, the purpose of 
this article is to view the quantum states as context-independent distributions in the 
subquantum space, and for this task the concept of context seems unavoidable. To 
achieve this aim, the C*-algebraic approach is mathematically best suited. Now we 
turn to the C*-algebraic formulation in L ( H ) .  

We start by reformulating the set of all conditions of the preceding section in the 
C*-algebraic language. First of all, it is easy to see that relation (2.3) between two 
observables 6, &O(H) holds if and only if they generate the same commutative C* 
subalgebra of L(H) .  Classes of equivalent observables are in a natural bijection with 
the commutative C* subalgebras of L ( H )  that are generated by a single bounded 
observable. 

Such a subalgebra A consists precisely of all continuous functions of the generating 
observable. We take it as a context. 

Secondly, assumptions (i) and (iv) can be reformulated as follows: 
For each subquantum state weQ,  each context A and6sA the number Ci(o),sC (the 

value of Ci in o, relative to, A )  is defined. The rnap A3Ci -+ C i f ~ ) ~  is a non-triuialmultiplica- 
tive linear *-jiunctional, i.e. a character on A .  

In any given subquantum space Q, a topologj, can be introduced in a natural way: 
for each context A we require all functions Q a o  -+ C ; ( O ) ~  to be continuous, and the 
topology to be minimal in this sense. In this induced topology the subquantum space 
need not be compact. However, it has been shown [I71 that it can always be 
compactified. 

An algebraic formulation which also encompasses (ii) and (iii) reads as follows: 
The subquantum space S2 is a compact topological space. For each context A a 

*-honzotnorphisnz FA : A  -+ C(Q) is defined, )$,here C(Q) denotes the C* algebra of 
complex-valued continuousfunctions on a. The number FA(rl)(o) = C?(PJ)~  is the value of 
r? in the state o relative to the context A. For each sfatistical operator p in H there exists 
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aprobability measure pp on the Borel 0-feld B ( n )  of a such that for each context A 
and d s A  the following equafify holds: 

W P 4  =In  FA(@(^) Qp(w). 

IfFa(b)(wl)=FA(i?)(w2) for each A andriEA then m l = w 2 .  

4. An abstract C*-algebraic formulation of a general contextual subquantum model 
and its structure space realization 

In the preceding section we formulated a subquantum model in terms of a C* algebra, 
the elements of which have a particular nature: they are operators in the quantum state 
space H .  So far, we have considered contexts which are commutative C* subalgebras 
generated by one of its Hermitian elements. In view of the fact that in quantum mechan- 
ics one typically has sets of compatible observables that are simultaneously measured, 
we extend our definition of context to commutative C* algebras of a general nature. 
We find it more convenient to work in terms of an abstract C* algebra. 

Let Z be a C' algebra and T a chosen family of commutative C* subalgebra of Z 
that generates the whole B (a minimality requirement for Z). 

Dejinifion 4.1. A contextual. subquantum nzodel for given (C,T) is a pair 
(Q {Fa ; A a T } ) ,  where C2 is a compact topological space and {Fa ; A E T }  is a family 
of *-homomorphisms Fa : A  --t C(n) such that: 

(i) For each state p on Z there exists a probability measure pLp on B(C2) satisfying 

jnF&)(o) dp,(w)=p(a) 

for each ACT and aaA.  
(ii) If FR(a)(wl)=Fa(a)(m2) for each A E T  and each a s A ,  then w ,  =a2 

Remark. In the special case C = L ( H )  the states p which are ultraweakly continuous on 
L ( H )  are precisely those which are representable by statistical operators in H.  

Theorem 4.1. For any pair {Z, T )  there exists a contextual subquantum model: the 
structure space realization. 

Proof: Let us consider the Cartesian product of the structure spaces (see appendix 2) 

6= n X ( A )  
RET 

endowed with the Tihonov product topolom [18]. In this topology, 6 is compact. For 
each ACT we define FA : A  -+ C(C2) as follows: 

F.da)(w) = z A ( o ) ( a )  

where rR : 6 + X(A)  denotes the Ath coordinate projection. It is clear that Fa is a 
-homomorphism and that property (ii) of definition 4.1 is fulfilled. For each state p 

on Z and A C T ,  let pp.a denote the probability measure on the Borel U-field of X ( A ) ,  
* 
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corresponding (via the Riesz theorem) to the restriction pi A.  Finally, we define a 
probability measure pp on fi to be the direct product of all measures p , , . ~ .  

Our next theorem relates the structure space subqunntum model (a, {FA ; A C T } )  
with an arbitrary subquantum model satisfying definition 4.1. The subquantum space 

contains, in a natural manner, the subquantum space B of any other such model. 

Theorem 4.2. Let (a, {Fa ; AET}) be an arbitrary contextual subquantum model for 
(C, T). Then there exists one and only one map L : 62 + fi such that dA = sAi, for each 
AET, where the map LA : S2 + X ( A )  is defined by 

0 

aA(o)(a) =~~(a)(o). 
The map 1 is injective, it is a homeomorphism of B on to @), and it satisfies FA(a) = 
&(u)I, for each A E T  and LEA. Hence, the entire model (a, {FA ; A C T } )  is embedded 
into the model (fi, {FA ; A E T } ) ,  making the latter maximal. 

Proof. The existence and uniqueness of I is a direct consequence of the definition of 
the space 6. As is well known, a uecessaryand sufficient condition for continuity of a 
map f: Z -+ fi where Z is an arbitrary topological space, is the continuity of all the 
compositions nAf:Z - X ( A ) .  Consequently, 1 is continuous, because the dAs have this 
property. (The continuity of dA is a consequence of the fact that the topology on 
X ( A )  is defined as the *-weak topology.) The relation dA=rAc is actually LA(w)(a)= 
FA(n)(w)= [nAi(w)](n)  =[FA(a)i](w). Thus, &(a) =FA(a)r. 

Further, t (w l )=  i(wJ implies FA(a)(wl)=FA(a)(w2), for each A ~ T a n d  aeA.Thus 
wI  = 02, that is, I is injective. 

Finally, I as a continuous bijection between the compact topological space B and 
the Hausdoff topological space r(B) is necessarily a homeomorphism 1181. 0 

The existence of non-maximal models is discussed in appendix 3. The following 
proposition shows that the subquantum space of any contextual subquantum model is 
sufficiently large in a certain sense. 

Proposition 4.3. Let (a, {Fa ; AET}) be a contextual subquantum model for (Z, T ) .  
For each A E T  one has n,z(Q) = X ( A ) ,  i.e. after embedding each projection is the entire 
X ( A ) .  Equivalently, for each AET, the *-homomorphism F is injective. 

Proof. If FA(a) =O then for each state p on C we have 

~ ( a ) = [ ~ F ~ ( o ) ( m )  d&LP(w)=O. 

Thusa=O. 0 

Remark. The structure space realization specifies to the spectral one if Z = L ( H )  and 
the contexts are defined as in section 2 (see appendix 2). 

5. Discussion 

(a) It is well known that mathematically the most natural way of representing a general 
observable is via its spectral form, in which the spectrum and the spectral projectors 
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are treated with equal physical significance. In quantum mechanics, there correspond 
characteristic vectors to the discrete spectral points, which have the physical meaning 
of homogeneous ensembles with sharp values of the observable. In contrast, there are 
no characteristic vectors corresponding to the points of the continuous part of the 
spectrum, i.e. these values cannot be sharp in any ensemble. 

On the other hand, on the subquantum level both the points of the discrete part of 
the spectrum and those of the continuous one are treated on the same footing: in a 
subquantum state w s a  each quantum observable (for a given context) has a definite 
value regardless of the nature of this value as a spectral point. Thus, in this article we 
have expounded a consistent subquantum (contextual) theory covering all bounded 
observables (with any kind of spectra). 

If the general theory (see section 4) is specified to the case when contexts are defined 
as commutative von Neumann algebras, then along with a given observable all its 
spectral projectors are explicitly interpretable as subquantum events. As mentioned in 
the introduction, the price one has to pay for this is that the subquantum space S2 is 
necessarily extremely disconnected. 

On the other hand, if the general theory is specified lo the case when contexts are 
defined as commutative C* algebras generated by single observables, not all spectral 
projectors of a given observable appear as subquantum events. 

At first glance one becomes worried about the measurement of the points of the 
continuous spectra because this measurement is necessarily approximate and involves 
the occurrence of spectral projectors of intervals containing the points. Though these 
are generally not present among the subquantum events, they can be arbitrarily well 
approximated by appropriate continuous functions of the generating observable (which 
are, admittedly, more complex observables). 

(b)  The approach of this article is based on the concept of contextuality. However, 
this concept is not an accepted basic physical one like variables, states and averages. 
A natural way to view contextuality is to define subquantum variables as ordered pairs 
(a. A). A theory of such subquantum variables was elaborated in the framework of 
contextual extensions of C* algebras of quantum observables [16,24]. 

(c)  The most intriguing aspect of contextuality in the possibility of non-locality on 
the subquantum level. More precisely, in the case of two particles which are distant 
but in a statistically correlated quantum state the choices that one decides to measure 
on one of them represent different contexts for a simultaneous measurement on the 
other. Actually, the phenomenon of non-local contextuality is closely related to the 
kind of probability theory on which the subquantum theory is based. In standard 
probability theory, which is used in this article, non-locality is unavoidable, as is well 
known from Bell's inequalities [IO, 191. On the other hand, it was shown [20-23] that 
with a generalized probability theory it is possible to construct a local subquantum 
theory. 

( d )  It is clear in the theory presented in this article that for a complete observable 
there exists only one context: the one generated by it. Occasionally in the literature on 
hidden variables [12] one encounters theories that are practically restricted to complete 
observables. This is why contextuality is not conspicuous in them. One should bear in 
mind that every complete observable for a given quantum system becomes incomplete 
if one considers a mote complex system containing the former system as a subsystem. 
Hence, restriction to complete observables is an oversimplification that amounts to 
hiding contextuality. 

(e)  When a subquantum model is contextual, this does not necessarily imply that 
every incomplete observable is contextual. If one or more are non-contextual, then one 
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could construct an intermediate or partially causal theory in which quantum mechanics 
is completed by subquantum states in which only the non-contextual observables have 
(unique) definite values. In this way one obtains a theory of the type of beables (as 
Bell called them [IO]). In Bell’s article the densities of the numbers of fermions in space 
and time were taken for beables. 

Appendix 1. Gleason’s theorem and the impossibility of non-contextual 
subquantum states 

We are going to prove that Gleason’s theorem [3] forbids the existence of non-contex- 
tnal subquantum states, as far as standard quantum mechanical structure is concerned. 
Let H be an (infinite-dimensional) Hilbert space. Further, let T be a collection of 
commutative C* subalgebras (contexts) of L ( H )  which is sufficiently rich in the sense 
that for each pair (@, $) of mutually orthogonal projectors in H there exists ACT such 
that @, $d. In particular, this condition implies that every projector is contained in 
some context AET. 

Let (a, {FA ;ACT} )  be an arbitrary contextual subquantum model for ( L ( H ) ,  T).  

Theorem Al.  For each subquantum state CO& there exists a projector @ e P ( H )  and 
contexts A, BET such that @ E A  n B and 

FA(@)(Q))  = 1 

Fd@)(w)=O.  

In other words, every subquantum state w s R  is necessarily contextuuf. 

Proox It is easy to see that F,(@)(w)~{o ,  I}  for each projector@eP(H), w &  and 
context AET such that @ E A .  Let us assume that there exists a subquantum state w d 2  
with the property that the number FA(#)(@) is independent of A for a given#. Hence, 
the formula yr(#)=F,(@)(o) consistently defines a map yr: P ( H )  - {0,1). 

For a given 1223 let us consider an arbitrary unital *-monomorphism 
i :  L(HJ - L ( H ) ,  where H,, is an n-dimensional Hilbert space. For example, such a map 
can be constructed by realizing H in the form H=H,@H and defining i (a)=u@I.  

The composition yi:P(H,) + {0, I} is a normalized and additive map (in the sense 
that Vi($+$) = yri(@)+ vi($) if the projectors@, $ are orthogonal). According to Glea- 
son’s theorem, there exists a statistical operator p :  H. - H. such that yi($)=Tr(p@) 
for each @eP(H,). However, this is a contradiction, since the set {Tr( p@););peP(H,)} 
contains at least one point between 0 and 1. Hence, non-contextual subquantum states 
do not exist. 0 

Remark. The above theorem implies that not all continuous functional relations 
between quantum observables are preserved on the subquantum level unless a context 
is specified. Moreover, they cannot be preserved in a single subquantum state. Indeed, 
if w is a subquantum state respecting all continuous functional relations, and if T 
consists of contexts generated by single observables, then 
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for each BET and hcB, where A is the context generated by 2. Here, we have used the 
notation of section 2. In particular, the above formula holds for h € P ( H ) .  However, 
this is in contradiction to theorem AI. 

’ 

In the above proof, Gleason’s theorem is not directly applicable on the projector 
lattice P(H) ,  since in the infinite-dimensional case an additional assumption of countable 
additioity figures in the formulation of the theorem. It is worth noticing that the contra- 
diction emerges without any assumption about statistical interpretability of quantum 
states. 

It is interesting to analyse a possibility of non-contextual subquantum states in 
the general C*-algebraic framework. There exist various highly non-commutative C* 
algebras 2 ‘admitting’ non-contextual subquantum states. For example, if algebra pos- 
sesses characters, then every character (o dispersion-free state) is interpretable in the 
mentioned manner. On the other hand,~it is important to mention that the algebraic 
version of Gleason’s theorem [25] excludes the possibility of non-contextual subqnan- 
tum states for the large class of von Neumann algebras C without direct summands of 
the type I,, n c  { 1,2} (if the family T is sufficiently large, as is assumed in the above 
consideration). 

Appendix 2. The structure space of a commutative C* algebra 

Let A be a commutative C* algebra and let X = X ( A )  be the set of all characters on A 
(i.e. the ser of all non-trivial linear multiplicative functionals on A ) .  It is worth noticing 
that every characterf: A + Cis a continuous Hermitian map satisfyingf( 1) = 1. Let A* 
be the space of all continuous linear functionals on A .  In the *-weak topology of A* 
(this topology is generated by the system of semiuormsp, :f- If(a)l ,  where aEA) the 
set X is a compact topological space, and it is called the structure space of A (or the 
spectrum of A) .  

Let us now consider a commutative C* algebra C(X) of all continuous complex- 
valued functions on X .  

According to the Gelfand-Naimark theorem [ 141, the mapping G: A + C ( X )  defined 
by 

G M f )  =fW 
where aeA and  EX is a C*-algebraic isomorphism. 

Topological properties of X are encoded in algebraic properties of A.  For example, 
metrizability of X is equivalent to separability of A .  

In the case when A is generated by a single element acA, then X ( A )  is naturally 
homeomorphic to the standard spectrum c(a). In terms of the identification X ( A ) =  
a(a), we have G(a)(o)=o, for each w ~ a ( a ) .  

Appendix 3. On the existence of non-maximal subquantum models 

According to theorem 4.2, every contextual subquantum model (Cl, {FA ; ACT}) for 
(C, T) is naturally embedable in the maximal model (a, {FA ; ACT}). 

If the algebra C and the family T are chosen in a ‘sufficiently singular’ way, then 
the maximal model will be the unique contextual subquantum model. As a trivial 
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illustration for this, we can take any pair ( A ,  {A}), where A is a commutative C* 
algebra. 

However, in the general case there exists a large variety of non-maximal models. 
We are going to describe a simple construction of such models. 

Let'us assume that there exists a non-trivial map g:T+T such that Asg(A). Let 
us define the space Q and the family {FA ; AeT} of maps FA :A -f C(Q) as follows: 

Fda)(w)= z&A)(w)(a) 

where zs are the corresponding coordinate projections. It is easy to see that the pair 
(Q, {FA ; AET}) is a contextual subquantum model for (2, T) and that the image of 
the map r : Q  + fi figuring in thcorem~4.2 is a non-trivial subspace of a. 

It is of some interest to define a concept of a minimal subquantum model. By 
definition, a contextual subquantum model is minimalif it docs not contain a subquan- 
tum space of another subquantum model as its non-trivial part. It can be shown [17] 
that every contextual subquantum model has a minimal submodel. 
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